An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies

We prove an isoperimetric inequality for uniformly log-concave measures and for the uniform measure on a uniformly convex body. These inequalities imply the log-Sobolev inequalities proved by Bobkov and Ledoux [12] and Bobkov and Zegarlinski [13]. We also recover a concentration inequality for uniformly convex bodies, similar to that proved by Gromov and Milman [22].

متن کامل

On Gaussian Marginals of Uniformly Convex Bodies

We show that many uniformly convex bodies have Gaussian marginals in most directions in a strong sense, which takes into account the tails of the distributions. These include uniformly convex bodies with power type 2, and power type p > 2 with some additional type condition. In particular, all unit-balls of subspaces of Lp for 1 < p < ∞ have Gaussian marginals in this strong sense. Using the we...

متن کامل

On Isoperimetric Inequalities for Log-convex Measures

Let μ = ρdx be a Borel measure on Rd. A Borel set A ⊂ R is a solution of the isoperimetric problem if for any B ⊂ R satisfying μ(A) = μ(B) one has μ(∂A) ≤ μ(∂B), where μ(∂A) = ∫ ∂A ρ dHd−1 is the corresponding surface measure. There exists only a small number of examples where the isoperimetric problem has an exact solution. The most important case is given by Lebesgue measure λ on R, the solut...

متن کامل

Some Uniformly Convex Spaces

size of the éliminants but the size of their largest prime factor which is important, and secondly it is not essential to take the w's in order of magnitude. In answer, it should be pointed out that after one passes the limits of factor tables, it becomes impracticable to deal with the factors of the éliminant rather than the éliminant. Therefore, since the éliminant (in one case at least) appe...

متن کامل

Classes of uniformly starlike and convex functions

Some classes of uniformly starlike and convex functions are introduced. The geometrical properties of these classes and their behavior under certain integral operators are investigated. 1. Introduction. Let A denote the class of functions of the form f (z) = z+ ∞ n=2 a n z

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2008

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2007.12.002